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Abstract
This project introduces a distributed path tracer designed for effi-
cient and scalable graphics rendering. The system employs a client-
server architecture where the client computes direct lighting locally
while distributing the computationally intensive indirect lighting
tasks across multiple servers. Key features include automatic server
detection, dynamic load balancing, user input synchronization, and
fault-tolerant task redistribution. The system is built on ZeroMQ to
ensure robust and asynchronous communication, enabling seamless
integration of results from multiple servers into the final rendered
image.

Experiments demonstrate the system’s ability to efficiently sched-
ule tasks, maintain interactivity, and adapt to server failures while
achieving enhanced rendering quality with additional server re-
sources. Even under limited or unstable network conditions, the
system ensures basic functionality by supporting fallback to local
rendering.

This project showcases the feasibility of distributed rendering
for graphics applications, highlighting its potential to improve ren-
dering performance and scalability in real-world scenarios.
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1 Introduction
With advancements in communication technology, online and cloud
gaming have become increasingly popular, allowing players to
enjoy games anywhere and at any time. This growing market has
prompted numerous companies to launch their own cloud gaming
services.

In traditional cloud gaming architectures, a game instance op-
erates entirely in the cloud. A thin client sends the user’s input
to a cloud gaming server, which handles the game logic computa-
tions and full-frame rendering. The final rendered images are then
streamed back to the thin client for display. This model enables
gaming on low-performance devices, is easy to deploy, and ensures
compatibility with legacy applications. However, it also introduces
high latency and renders the service completely inaccessible with-
out a network connection.

As hardware capabilities continue to improve, thin devices are
becoming more powerful and capable of handling tasks beyond sim-
ple image display. Traditional cloud gaming servers, often located
in remote data centers, face high latency and increased operational
costs. To address these challenges, a hybrid solution for scalable
and cloud-native gaming has been proposed. In this approach, basic
and latency-sensitive computations are performed on local devices,
while cloud computing resources are utilized for more demanding
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tasks. This enables limited access to the application even with-
out a network connection and enhances rendering quality when a
connection is available.

In global illumination rendering, the rendering equation can be
divided into two parts: emission and direct illumination, which are
view-dependent and computationally inexpensive, and indirect il-
lumination, which is view-independent, computationally intensive,
mostly smooth, and can tolerate some latency without significant
visual impact. These two components can be computed separately
and integrated during the final rendering process.

Traditional gaming architectures compute all rendering locally,
limiting scalability. CloudLight [3] and Distributed Hybrid Render-
ing (DHR) [6] address this by offloading computationally inten-
sive tasks, such as indirect illumination, to the cloud. Kahawai[4]
employs a unique approach where the server computes both low-
quality and high-quality renderings, streaming only the delta be-
tween the two to the client. The client combines this delta with
locally rendered low-quality frames to produce high-quality visu-
als, enabling limited offline functionality. However, these models
depend heavily on a single server, and performance can degrade
significantly if the server experiences overload or disconnection.

In contrast, parallel rendering [1] techniques, widely used in
offline media production such as film, leverage rendering farms
to generate highly realistic images with substantial computational
budgets. While powerful, these methods are unsuitable for real-
time applications due to their focus on high-fidelity production
rather than interactive performance. Combining the strengths of
hybrid and parallel rendering methods offers a promising pathway
for scalable and robust distributed rendering systems, especially
for interactive applications like augmented reality (AR) and virtual
reality (VR).

This term project aims to develop a distributed path tracer that
computes direct illumination locally on the user’s device while
distributing the indirect illumination computation across other
devices. The goal is to evaluate the feasibility and scalability of
hybrid rendering in gaming applications.

2 Background
2.1 The Rendering Equation and Path Tracing
The Rendering Equation [5], introduced by James Kajiya at SIG-
GRAPH 1986, is a fundamental framework for modeling light trans-
port in a scene. It determines the color and brightness of visible
surfaces using a mathematical model that calculates the color and
brightness of each pixel by considering the light emitted and re-
flected in various directions, including the effects of shadows, re-
flections, and indirect illumination. The equation is expressed as
follows:

𝐿𝑜 (𝑥, 𝜔𝑜 ) = 𝐿𝑒 (𝑥,𝜔𝑜 ) +
∫
Ω
𝑓𝑟 (𝑥, 𝜔𝑖 , 𝜔𝑜 )𝐿𝑖 (𝑥, 𝜔𝑖 ) (𝜔𝑖 · 𝑛) 𝑑𝜔𝑖
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In this equation, 𝐿𝑜 (𝑥,𝜔𝑜 ) represents the radiance leaving a
surface point 𝑥 in the outgoing direction 𝜔𝑜 . The term 𝐿𝑒 (𝑥, 𝜔𝑜 )
denotes the emitted radiance at point 𝑥 in the direction 𝜔𝑜 . The
integral accounts for all incoming directions 𝜔𝑖 over the hemi-
sphere Ω above the surface. For each incoming direction, the ra-
diance 𝐿𝑖 (𝑥,𝜔𝑖 ) contributes to the reflected light based on the
surface’s Bidirectional Reflectance Distribution Function (BRDF)
𝑓𝑟 (𝑥, 𝜔𝑖 , 𝜔𝑜 ), which characterizes how light is scattered at the sur-
face. (𝜔𝑖 ·𝑛) is the dot product between the incoming light direction
𝜔𝑖 and the surface normal 𝑛 and𝑑𝜔𝑖 represents the differential solid
angle element for integration over all possible incoming directions
over the hemisphere.

In general, the reflected light can be viewed as a combination
of emissions from light sources, direct illumination on the surface,
and the accumulation of indirect illumination.

The Rendering Equation serves as a general model for comput-
ing light in a virtual environment. One approach to solving this
equation is Path Tracing, a Monte Carlo-based algorithm that ap-
proximates the solution by stochastically sampling light paths. The
algorithm traces rays from the camera, allowing each ray to interact
with surfaces according to their material properties. These interac-
tions include reflection, refraction, scattering, and absorption. Rays
are traced back to their origins, typically a light source, and the
contributions from all sampled paths are combined to compute the
final pixel color. To control computation intensity, Russian Roulette
(RR) is used to terminate rays probabilistically.

Although Path Tracing produces highly realistic rendered im-
ages, it is computationally expensive. A large number of rays must
be traced for each pixel to reduce noise and achieve accurate re-
sults, which is why it is often limited to offline rendering. However,
advancements in hardware, such as the introduction of RT Cores
for real-time ray tracing and Deep Learning Super Sampling (DLSS)
for denoising and upscaling, have enabled some applications of
Path Tracing in real-time rendering.

2.2 CloudLight
CloudLight [3] is a system proposed by NVIDIA that computes
indirect lighting asynchronously on an abstracted, computational
“cloud”. The system is evaluated using three different indirect illu-
mination strategies: path-traced irradiance maps, photon mapping,
and cone-traced voxels. The overall architecture of CloudLight is
depicted in Figure 1.

In the figure, the blue section on the left represents computations
performed on the server, while the black section on the right rep-
resents computations performed locally on the client. The arrows
indicate the bandwidth requirements between these components.
As shown, the rendering pipeline is divided at the point with the
lowest bandwidth demand.

For the voxel-based approach, the server employs one GPU (the
global illumination GPU) to generate view-independent scene data
and another smaller GPU (the final frame GPU) to generate view-
dependent frames. The fully rendered frame is encoded on the
server side and sent to the client for decoding and display.

In the irradiance map approach, the server gathers indirect light-
ing data, constructs the irradiance maps, and transmits them to the

Figure 1: The CloudLight Pipelines of Three Indirect Illumi-
nation Strategies.

client. The client calculates direct lighting and performs a texture-
space deferred shading pass using the irradiance map for indirect
lighting.

For photon mapping, the server traces photons using a ray tracer
and transmits the photon data to the client. The client computes
direct lighting locally and uses the transmitted photons to calculate
indirect lighting.

Experiments with CloudLight were conducted on commercial
hardware and software, demonstrating its robustness and scalability
under realistic workloads. The results highlight its potential for
enabling remote illumination in practical applications.

2.3 DHR: Distributed Hybrid Rendering
Distributed Hybrid Rendering (DHR) [6] is a rendering system
that integrates local and cloud rendering to enhance the quality
of graphics for the Metaverse. The local client generates frames
with relatively low graphical settings using rasterization, while the
server computes ray-traced shadows and streams the results back
to the client to enhance visual fidelity.

Due to network latency, the visibility buffer received from the
server may lag several frames behind the locally computed G-buffer.
To address this issue, DHR employsmotion vectors and G-buffers on
the client side to predict the visibility buffer. This approach ensures
both the correctness of the rendered frames and the responsiveness
required for user interactions.

2.4 ZeroMQ
ZeroMQ [8] is an open-source, high-performance asynchronous
messaging library designed for distributed and concurrent appli-
cations. Unlike traditional message-oriented middleware, ZeroMQ
does not require a dedicated message broker while still offering
robust message queuing capabilities. It supports various messaging
patterns, including publish/subscribe, request/reply, and router/dealer,
among others. Furthermore, ZeroMQ works seamlessly with differ-
ent transport protocols, making it a flexible and scalable solution
for messaging systems.
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3 The Distributed Path Tracer
This section introduces the architecture of the Distributed Path
Tracer, a distributed rendering system built with ZeroMQ. It lever-
ages client-side ray tracing for direct lighting and server-side path
tracing for indirect lighting, with the results seamlessly integrated
on the client.

3.1 System Architecture
The system follows a classical Client-Server architecture, where
both the client and server share a similar rendering algorithm and
environment setup. The server executes the traditional path-tracing
algorithm, whose pseudo code is illustrated in Figure 2.

Figure 2: The pseudo code of path tracing [7].

The glossy reflection model is implemented using the Frostbite 3
standard material BRDF, which includes diffuse and specular com-
ponents [2]. Additionally, a joint bilateral filter is applied for final
image de-noising. The key difference in computation between the
client and the server is that the client only calculates the contribu-
tion from the light source, as indicated in the first code block of the
pseudo code in Figure 2.

The system is designed with a single client, acting as the sys-
tem initiator, and multiple servers to facilitate load balancing. An
overview of the system architecture is shown in Figure 3.

Figure 3: The System Architecture Overview.

The client computes the entire frame of direct lighting using
ray-tracing techniques, while the servers handle path-tracing com-
putations for their assigned pixel blocks. The servers transmit their
partially rendered results to the client, which integrates the indirect
lighting information with its locally computed direct lighting image
to produce the final output.

The client broadcasts all user inputs—such as camera movements,
field-of-view (FoV) changes, light placements, window size adjust-
ments, tracing commands, and algorithm parameter updates—to
all servers. When a new server connects, the client detects the
event, initializes the new server with its current state, and sched-
ules pixel block task allocation. Similarly, if a server disconnects
due to hardware or network failures, the client detects the issue
and redistributes the pixel block tasks accordingly.

This system supports fallback to purely local rendering, ensur-
ing basic interaction and functionality even in unstable network
environments.

3.2 Automatic New Server Detection and Initial
State Synchronization

This feature leverages ZeroMQ’s Router-Dealer communication
pattern, a robust messaging model designed for building scalable,
distributed systems. Router-Dealer supports asynchronous, non-
blocking communication, making it ideal for scenarios where mul-
tiple clients or workers interact with multiple servers or request
handlers in a load-balanced or message-routing environment.

Figure 4: The Process of Server Detection and State Synchro-
nization.

The process for server detection and initial state synchroniza-
tion is illustrated in Figure 4. The Distributed Path Tracer client
monitors a dedicated port for new server connections. When a
server connects, it sends a "hello" message to the client and waits
for a reply in a blocking manner. The client periodically checks the
monitoring port for incoming messages. Upon receiving a message,
the client verifies whether the sender’s identity is new. If the server
identity is unrecognized, it indicates a new server connection. The
client records the server’s identity in its active server array and
assigns it an ID for subsequent pixel block scheduling.

Following this, the client sends its complete state to the newly
connected server, including parameters such as camera position and
orientation, field of view (FoV), light source positions, the current
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scene configuration, kernel size of the joint bilateral filter, and
samples-per-pixel settings. The server uses this data to synchronize
its state, which includes loading the relevant scene and initializing
path tracer parameters.

3.3 User Input Synchronization
This feature utilizes ZeroMQ’s Pub-Sub pattern, a messaging model
designed for efficient broadcast communication. The Pub-Sub pat-
tern allows a Publisher (Pub) to send messages to multiple Sub-
scribers (Sub), enabling one-to-many communication.

Figure 5: The Process of User Input Synchronization.

The process is depicted in Figure 5. The client initializes an input
broadcast socket to which servers subscribe. Whenever the client
detects a user input event (e.g., mouse movement, keyboard input,
or window refresh), it packages the relevant parameters into a
message and broadcasts it to the servers. Since the parameters for
different event types vary, the size of the event message also varies.
Servers handle these messages based on their size, which allows
them to determine the appropriate action to take for each event
type.

3.4 Server Failure Detection and Pixel Block
Reallocation

Server failure detection and pixel block reallocation are also imple-
mented using the Router-Dealer pattern on the monitoring port.
The process is outlined in Figure 6. The client periodically sends
heartbeat messages to all servers listed in its active server array,
with a six-second interval between checks. Each server responds
to the heartbeat message with a "hello" reply. The client tracks
responses, recording the IDs of servers that reply.

At the next heartbeat cycle, the client checks whether all servers
have responded. If one or more servers fail to reply, they are marked
as unresponsive, and the client initiates task reallocation. The client
assigns new IDs to the responsive servers and sends the updated
IDs and the current count of active servers to all functioning servers.
Upon receiving this update, each server adjusts its parameters ac-
cordingly, and new pixel blocks are assigned.

3.5 Final Frame Integration
Final frame integration is also handled using the Router-Dealer
pattern, but through the frame socket. The process is detailed in

Figure 6: The Process of Failure Detection and Task Reallo-
cation.

Figure 7. When the client receives the "start tracing" command, it
broadcasts all relevant path tracing parameters through the input
broadcast socket and begins computing direct lighting locally. Once
the local computation is complete, the client starts monitoring the
frame socket.

Figure 7: The Process of Final Frame Integration.

Upon receiving the command, servers commence path tracing
computations for their assigned pixel blocks. After completing in-
direct lighting computations, servers optionally apply denoising
techniques (depending on the parameter settings) and send the
processed partial frames to the client via the frame socket. These
messages contain the server’s identity, allowing the client to as-
sociate the received data with the corresponding pixel block. The
client then blends the indirect lighting results from the servers with
its locally computed direct lighting results.

When all partial results are received and integrated, the client
completes the image blending process, resulting in the final fully
rendered path-traced image.

4 Implementation and Experiment
This section details the experimental setup and discusses the results,
demonstrating the feasibility of distributed path tracing.
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4.1 Implementation and Environment Setup
The path tracer is implemented on the CPU, utilizing OpenMP
(OMP) for multi-threaded computation to accelerate rendering.
Both the client and servers operate on the same machine, which
is equipped with an AMD Ryzen 9 7945HX processor and 32GB of
RAM. Communication between the client and servers is established
through the TCP protocol.

Port 5555 is designated for synchronizing user input, while port
5556 is responsible for detecting server connections or disconnec-
tions and transmitting the initial state. Frame data is transmitted
via port 5557.

4.2 Experiment Result
The reference image is shown in Figure 8. It was rendered using a
single-machine path tracer with 256 samples per pixel to achieve a
noise-free image. This process is highly computation-intensive.

Figure 8: The Reference Image.

Figure 9 shows the result produced by the distributed path tracer
client without any server connection. This image includes only the
direct lighting contribution.

When a server is connected, the client and server execute their
computations independently. Figure 10 illustrates the intermediate
rendering process of the client and server working together.

After the server completes its rendering tasks, the client’s ren-
dered image is enhanced with indirect illumination results from
the server, as shown in Figure 11.

With more servers connected, the client is capable of broadcast-
ing user input commands to all servers in a synchronized manner.
This synchronization is demonstrated in Figure 12.

Once the client completes its local computation of direct lighting,
it waits for the servers to send their results. This intermediate state
is shown in Figure 13.

When the servers complete their computations, the final image
is integrated by the client. Figure 14 illustrates the result, where a
joint bilateral filter applied on the server side’s indirect illumination
results effectively reduces image noise with low sample per pixel.

Figure 9: The Distributed Path Tracer Client’s Direct Lighting
Result.

Figure 10: The Intermediate Rendering Process of the Client
and Server.

Figure 11: The Rendering Result of the Client and One Server.

If a server becomes disconnected, the client detects the failure
and redistributes the task to the remaining servers. This reschedul-
ing process is depicted in Figure 15.

This task distribution strategy, which involves dividing an image
into blocks, is applicable to various scene workloads. Figures 16,
17, and 18 illustrate the rendering results for different scenes using
varying numbers of servers.

Figure 16 presents the rendering result of the Sponza scene with
one server. Figure 17 shows the rendering result of the Crytek-
Sponza scene with two servers, while Figure 18 depicts the render-
ing result of the Conference scene with three servers.
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Figure 12: The Synchronized Control between Client and
Three Servers.

Figure 13: The Client Waits for the Results from Three
Servers.

5 Discussion
The current implementation of the distributed path tracer was
designed to operate onWindows andwas tested on a singlemachine
due to device limitations. This setup inherently constrained the
number of rays available for rendering computation. Nevertheless,
the experiment successfully validated the feasibility and scalability
of the distributed path tracer.

The client system demonstrated resilience by leveraging local
computational capabilities, and maintaining interactivity even with-
out server connections or network connectivity. This capability
underscores the importance of fallback mechanisms in ensuring a

Figure 14: The Client Integrates the Results from Three
Servers.

Figure 15: The Client Detects One Server Failure and Re-
distribute the Task.

seamless user experience, particularly in interactive media applica-
tions.

5.1 Scalability Analysis
As demonstrated in Figures 8 and 9, incorporating indirect illumi-
nation significantly enhances image realism but incurs substantial
computational costs. Notably, later bounces contribute marginally
to the final image’s appearance, suggesting that combining direct
illumination with a limited degree of global illumination suffices
for most practical applications.



A Distributed Path Tracer EE 613, Dec. 2024, KAIST

Figure 16: The Rendering Result of Scene Sponza with One
Server.

Figure 17: The Rendering Result of Scene Crytek-Sponza
with Two Server.

In purely cloud-based rendering systems, the computational bur-
den shifts entirely to the cloud, achieving high-quality visuals at the
cost of completely losing application access during network failures.
This trade-off poses challenges for interactive media, where inno-
vation depends on continuous responsiveness. Hybrid approaches
that balance computation between local and cloud systems, coupled
with robust fallback mechanisms, represent a promising area for
future research.

From a computational perspective, the time complexity of the
path-tracing algorithm can be expressed as follows:

• For a scene with𝑇 triangles and a ray with an average depth
of 𝐷 bounces, the time complexity per ray is 𝑂 (𝐷 ·𝑇 ).

• Utilizing an acceleration structure such as a Bounding Vol-
ume Hierarchy (BVH) reduces this to 𝑂 (𝐷 · log𝑇 ).

• For an image with resolution𝑊 ·𝐻 , the total time complexity
for one ray per pixel is 𝑂 (𝑊 · 𝐻 · 𝐷 · log𝑇 ).

Given a machine with computational capacity 𝐶 , the maximum
samples per pixel (SPP) is determined by:

𝑆𝑃𝑃 =
𝐶

𝑂 (𝑊 · 𝐻 · 𝐷 · log𝑇 )

Figure 18: The Rendering Result of Scene Conference with
Three Server.

On the client side, where 𝐷 = 1 (direct illumination only), the
computational complexity is significantly lower compared to the
server, which must process global illumination with 𝐷 bounces. As
a result, the server’s computational workload is 𝐷 times greater
than that of the client. When additional servers are introduced, the
rendering workload is distributed across𝑁 servers, with each server
processing a proportional fraction of the image. Consequently, the
samples per pixel (SPP) for each server can be expressed as:

𝑆𝑃𝑃 =
𝐶

𝑂 (𝑊 · 𝐻 · 𝐷 · log𝑇 ) · 𝑁

The workload distribution strategy allows servers to allocate
more resources to improving rendering quality by increasing the
sampling rate. Alternatively, if the SPP is fixed, by allocating 𝑁 = 𝐷

servers, the computation required for each server is effectively
reduced to 1

𝑁
of the original workload.

Alternatively, if the SPP is fixed, allocating 𝑁 = 𝑆𝑃𝑃 · 𝐷 servers
effectively reduces the computation per server to 1

𝑁
of the original

workload. This adjustment aligns each server’s computational time
with that of the client processing direct illumination, assuming the
client and server have similar computational capabilities. As a result,
the servers can complete rendering almost simultaneously with the
client, enabling immediate result previews. In practice, servers are
typically more powerful than clients, reducing the required number
of servers. This system improves the overall fidelity of the image
and ensuring scalability as more servers joins.

5.2 Future Improvement
The current implementation is limited to offline rendering scenar-
ios due to the computational complexity of the path tracing algo-
rithm. For real-time rendering, it requires significant improvements.
These include the integration of sophisticated global illumination
algorithms and advanced computer graphics techniques, such as
up-sampling and frame generation, to attain a minimum frame
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rate of 30 FPS. Transitioning to GPU-based computation and sepa-
rating computation from display logic are also essential for more
efficient task offloading. Furthermore, predictive techniques will
be necessary to reduce the impact of network latency and enhance
system responsiveness. Accurate device capability estimation is
essential for balanced task distribution and consistent frame ren-
dering. These improvements would facilitate the transition from
offline to real-time rendering, expanding the system’s applicability
in interactive and dynamic environments.
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